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We report several limitations and failure modes of the recently expanded Layzer model for hydrodynamic
instabilities. The failures occur for large initial amplitudes, for stable accelerations, and for spikes in two-fluid
systems.
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Hydrodynamic instabilities at fluid interfaces continue to
be extensively studied theoretically, computationally, and ex-
perimentally �1� because they induce significant mixing. Best
known is the deleterious effect of mixing on thermonuclear
burn in inertial confinement fusion �ICF� capsules �2�. Su-
pernova explosions also display mixing of inner shells �3�.
Any interface that is shocked or accelerated is subject to
Richtmyer-Meshkov �RM� or Rayleigh-Taylor �RT� instabili-
ties. Perturbations of amplitude � and wave number k at the
interface between two fluids of densities �A and �B undergo-
ing acceleration g evolve according to

�̈ − gkA� = 0. �1�

Here the Atwood number A is defined as ��B−�A� / ��B+�A�.
This equation is valid in the linear regime, �k�1. In the
nonlinear or large-amplitude regime the most commonly
used model is the Layzer model �4�. It has recently been
extended �5–8� and applied to experiments �9,10� and com-
pared with simulations �11�. In this paper we point out the
limitations and failures of this model. We hope to spur fur-
ther extension of the model and, more importantly, prompt
scrutiny of other models �12–14� where the issues we raise
here have not been addressed at all.

We find the following: �1� The model fails for initial am-
plitudes �0� ��0�max—see Eq. �8�. �2� The model fails for a
large class of acceleration histories g�t�—see Eq. �10�. �3�
The model fails to describe spikes for A�1. For A=1, how-
ever, the model for spikes is even more robust than for
bubbles for which it was originally proposed—see Fig. 4.

Notation. We take the interface to be given by ��t�
+�2�t�x2, where x is the coordinate along the interface.
Higher-order terms are neglected in the model. The initial
shape of the interface is given by �0 cos�kx� for two dimen-
sions �2D� and �0J0��1r /R� for 3D, where J0 �J1� is the
Bessel function of order zero �one� and �1 is the first zero of
J1, �1�3.832. We introduce the parameter c with c=2 for
2D and c=1 for 3D, and take k=2� /	 for 2D and k=�1 /R
for 3D. Expanding the cosine and Bessel functions we find

�2�0� = − ck2�0/4, �2�

where �0���t=0� is the initial amplitude. With this notation
the linear result is independent of c and valid for both 2D
and 3D.

The model. Layzer proposed his nonlinear RT model �4�
for A=1, �0=0, and constant acceleration. The model being
incompressible, the RM instability is treated as g=0 with the

shock providing �̇0 to initialize the problem. In �5� we ex-
tended the model to arbitrary �0. The equations can be writ-
ten as

�2�2 + ck/2��̈ + c2k2�̇2/4 + 2g�2 = 0, �3�

�2�t� = − ck�1 + ��1 + c��0k − 1�e−k�1+c���−�0��/4�1 + c� ,

�4�

where Eq. �2� has been used for �2�0�. As a check, define

�t�=e��−�0�k to obtain Eqs. �2a� and �2b� in �5� for c=2 �2D�
and c=1 �3D�, respectively. For arbitrary �0 we obtained a
first integral for g=const and a second integral, i.e., full ana-
lytic solution, for g=0. We pointed out particularly simple
solutions for �0=�* defined by

�* � 1/k�1 + c� . �5�

Zhang �6� considered 2D geometry only and his equations
and solutions for bubbles agreed with ours. He also proposed
a model for spikes and found fair agreement with previous
calculations.

An extension to arbitrary A was achieved by Goncharov
�7�. His results can be written as

F1
�̈

D
+ F2

c2k2�̇2

8D2 + 2gA�2 = 0 �6�

with

F1 = 2A�2
2 + c2Ak�2/2�1 + c� − c2k2/8�1 + c� , �7a�

F2 = 2A�2
2 + �A + cA − 2c − 1�k�2/�1 + c�

+ ck2�3cA/2 + A − c − 1�/4�1 + c�2, �7b�

D = �2 − ck/4�1 + c� , �7c�

and �2 still given by Eq. �4�. In addition, he proposed a
model for spikes, but found that at moderate A the model
underestimates �spike.

We pointed out �8� that a transformation generalizes our
earlier A=1 results to arbitrary A provided �0=�* and pro-
posed a simple analytic model for the evolution of RT and
RM bubbles from the linear to the nonlinear regime.

Bubbles. Depending on the numerical scheme used to
solve the second-order ordinary differential equation �ODE�
�Eq. �6�� we find that either the solution fails or gives a
patently wrong answer for �0� ��0�max given by
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��0k�max =
c

2�1 + c�
	1 +
1 +

4�1 + c�
Ac2 � �8�

and plotted in Fig. 1. The inset in that figure displays ��t� for
�0=0.3, 0.4, and 0.5 cm in a gedanken linear electric motor
�LEM� experiment �15� discussed in Ref. �8�: g=70gEarth,
	=7.3 /3 cm, 7.3 cm being the width of the tank containing
hexane as the light fluid and a water-NaI solution for the
heavy fluid �A�0.48�. One does not need numerical simula-
tions �although we did perform several� to declare the �0
=0.5 cm solution patently wrong. Indeed, for c=2, A=0.48,
and k=6� /7.3�2.58 cm−1, Eq. �8� gives ��0�max�0.48 cm,
explaining the failure at �0=0.5 cm.

Equation �8� is obtained by analyzing F1, the coefficient
of �̈ in Eq. �6�, after writing it as F1=2A��2−�2

+���2−�2
−�

with �2
�=c2k�−1� �1+4�1+c� /Ac2�1/2� /8�1+c� and finding

for what values of �2�0� can this coefficient vanish, using the
fact that �2�t� varies between �2�0� given by Eq. �2� and
�2��=−ck /4�1+c� from Eq. �4�. For example, for A=1 the
coefficient of �̈ in Eq. �3� at t=0 is ck�1−�0k� /2 and, at t
=, it is c2k /2�1+c�, which is positive. Clearly, at some time
the coefficient will vanish unless �0k�1, which is indeed
��0k�max for A=1 in Eq. �8�, independent of c.

While �0� ��0�max guarantees failure, �0� ��0�max does
not guarantee success. There is a large body of evidence
�4–11� confirming that the model does well for RT and RM
instabilities, and we quote the asymptotic bubble velocities:

�̇�� = 2
 gA

c�1 + c��1 + A�k
, RT,

�̇�� =
2�1 + c + cA − A�
c�1 + c��1 + A�kt

, RM. �9�

Hence we ask the question: Assuming that we start with an
amplitude in the admissible region, i.e., �0� ��0�max, does
the Layzer model give the correct answer for arbitrary accel-
eration histories?

It is well known that for �k�1 the Layzer model reduces
to the linear result, Eq. �1�, and that this equation is valid for

arbitrary g�t�. We have just shown that the model fails for
�0� ��0�max. Since its lower limit is trivial and its upper
limit is prohibited, we therefore propose attacking the prob-
lem with an intermediate value. Between �0�0 and �0

���0�max lies the value �0=�*=1 /k�1+c�. From Fig. 1 and
the above discussion it is clear that �* lies in the admissible
region for all A.

Now, for �0=�* Eq. �4� gives a constant �2 �this is the
reason for the exceptionally simple solutions given in �5,8��
and Eq. �6� can be written as


̈L − gkLAL
L = 0, �10�

where kL=c�1+c��1+A�k /2�1+c+cA−A�, AL=2A / �1+c
+cA−A�, and 
L=e��−�0�kL. Note the similarity of Eq. �10�
with Eq. �1�: Any solution to the linear equation automati-
cally gives a solution to Eq. �10� with the replacement of k
with kL, A with AL, and � with 
L. The nonlinear solution is
essentially the logarithm of the linear solution.

An important limitation can be deduced immediately: Any
g�t� that yields a sign-changing �linear�t� must be excluded
because 
L, the nonlinear solution for the same g�t�, is posi-
tive definite and cannot change sign. We found this by accel-
erating the LEM tank upward, i.e., in the stable direction,
and found that the Layzer model fails to produce the oscil-
lating gravity waves seen in the simulations and, of course,
expected on physical grounds as the phenomenon was well
known long before the RT instability. Though it helps to
obtain Eq. �10� and understand the mathematical origin by
setting �0=�*, this is not necessary; solutions to Eq. �3� or
�6� with any other �0, which must be obtained numerically,
also reveal this failure.

A possible solution may be to switch back and forth be-
tween bubble and spike equations �see below� every time �
goes through zero. We do not pursue such an approach here.

Another useful, but probably weaker argument follows
from Eq. �4�: Since �2�t�=const for �0=�*, how can ��t�
change sign or oscillate while keeping the same initial cur-
vature? We conclude that the Layzer model is primarily for
acceleration histories that allow the maintenance of the ini-
tial curvature—no phase changes. Indeed ��t� for RT and
RM instabilities grows with uniform sign and, as long as
�0� ��0�max, the Layzer model successfully predicts their
evolution �note that an application to a phase-reversing ex-
periment was done after the reversal �10��. Since �RM and
�RT grow logarithmically and linearly, respectively, with
time, we looked for a quadratically growing ��t�. An analytic
solution to Eq. �10� is easily obtained with the proper choice
of constants. Let g�t�=g�0��1+�t2� and take ��t�=�0�1
+�t2� with �0=�*. One finds �=� /2kL�0=g�0�AL /2�0. We
applied this acceleration to the LEM tank taking g�0�
=10gEarth=0.0098 cm /ms2 and 	=2.43 cm, A=0.48. The re-
sult is shown in Fig. 2 for �0=�*, 2�*, and 4�*, i.e., �0
=0.13, 0.26, and 0.52 cm. We used the above analytic equa-
tion for the first ��0=�*� run, and Eq. �6� for the others. The
last solution fails because 4�*� ��0�max. The dashed lines in
Fig. 2 are CALE �16� simulations showing essentially qua-
dratic bubble growth for all �0. Needless to say, there are no
physical reasons why the initial amplitude cannot be large

FIG. 1. ��0k�max vs A from Eq. �8�. The Layzer model fails for
�0� ��0�max. The inset shows RT bubble amplitudes with �0=0.3,
0.4, and 0.5 cm, the last one plainly wrong.
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and the hydrocode appears to produce reasonable results
�there are no experiments of this type�—only the model fails.

Spikes. Despite Layzer’s warnings about applying the
model to the “flow near the walls,” both Zhang and Gon-
charov proposed models for spikes. Limited to A=1 and c
=2, Zhang proposed �6� using the same equations except
with an initially negative �0 �and a positive �2�0�—see Eq.
�2��. On the other hand, Goncharov proposed �7� the trans-
formation �→−�, �2→−�2, A→−A, and g→−g. Both ap-
proaches correctly reproduce the linear result, Eq. �1�. How-
ever, they differ in the nonlinear regime. We find
Goncharov’s model for spikes to be in error in practically all
cases that we studied. The asymptotic spike velocities can be
obtained by applying the above transformation to Eq. �9�;
thus one obtains equations also found in drag-buoyancy
models �17,18�. Despite claims that such equations �Eq. �9�
with g→−g, A→−A� agree with simulations, we believe
these are accidental. Goncharov already pointed out the
shortcoming of his model for the RT spike. Our own simu-
lations with c=1 or 2 show the same trend: The RT spike is
underestimated by such a model. As for RM, we find that the
model overestimates simulations with small �0 and underes-
timates for large �0. Clearly, the model can agree with simu-
lations if �0 happens to be “just right.” For example, in Ref.
�8� we presented shock tube experiments simulated with
CALE for a He-air Ms=1.2 system with �0

bubble=0.35 and
0.70 cm. The bubbles agreed, within �10%, with the model
�8�. The spikes, on the other hand, deviate substantially: The
model overestimates �underestimates� the spike for 0.35 cm
�0.70 cm�, as shown in Fig. 3. A calculation �not shown�
with 0.525 cm showed reasonable agreement for both bubble
and spike, but it is purely accidental.

The failure for spikes becomes perhaps obvious for this
model if we study Eq. �4�: Performing Goncharov’s transfor-
mation and taking the �→− limit we see that �2

spike asymp-
totes to ck /4�1+c�, which is the same as for the bubble
�except the sign, of course�. Now, it is well known that

spikes are “sharper,” i.e., have larger �2 than bubbles, es-
pecially at large A. Equation �4� is independent of A and
clearly predicts the wrong curvature for Goncharov’s spikes.

What about A=1? We find that the models differ even in
this case. In other words, while Eq. �6� reduces to Eq. �3� for
A=1 assuring that the model for bubbles is continuous in A,
it does not reduce to Eq. �3� after performing Goncharov’s
transformation and then setting A=1. Again, we find this
approach to be deficient. Zhang’s approach appears to be
quite successful. For RT, it is a curious fact, no doubt of little
value, that �̈spike→−g for both Zhang’s and Goncharov’s ap-
proaches, though they differ at early times. For RM, �spike in
one model can be larger or smaller than the other model,
again depending on �0. We shall not consider Goncharov’s
model for spikes any further.

Zhang’s model �6� for 2D spikes was the same as for
bubbles except �0

spike�0. We generalize this approach to 3D:
Eqs. �3� and �4�, derived �5� originally for bubbles, may be
used for bubbles ��0�0� or spikes ��0�0� in 2D �c=2� or
3D �c=1�. Thus we find that �2

spike→ + �exponentially� as
�spike→− and, as mentioned above, �̈spike→−g for RT.
These asymptotes are independent of c and hence agree with
Zhang’s findings. For RM we find

	 �̇

�̇0
�

�→−

2

=
�0 + c/4

�0 + c/4�1 + c�
=

1 − �0k

1/�1 + c� − �0k
�11�

for the asymptotic spike velocity. All amplitudes in the above
equation refer to spikes, i.e., �0�0 and �0��2�0� /k
=−c�0k /4.

In �5� we pointed out that asymptotic bubble velocities in
3D are always larger than 2D. The opposite is true for spike
velocities: From Eq. �11� �̇�3D� / �̇�2D� varies between

2 /3 and 1 as �0 varies from 0 to . To calculate the time
evolution of RM spikes in 2D and 3D use the analytic solu-
tions given in �5� for �0��*, i.e., Eq. �11� and Eq. �14�,
respectively, of Ref. �5� with a negative �0.

FIG. 2. Bubble amplitudes vs time for a quadratically increasing
g�t�—see text. Continuous lines are from the model and the dashed
lines from CALE simulations. The inset shows the interface at 30 ms
for the �0=0.13 cm run.

FIG. 3. RM spike amplitudes vs time from the Layzer model
and CALE simulations. Ms=1.2 shock strikes a perturbed He-air in-
terface. The model overestimates the small-amplitude run ��0

spike

=−0.35 cm� and underestimates the large-amplitude run ��0
spike

=−0.70 cm�. Reshock occurs at 4.2 ms.

LIMITATIONS AND FAILURES OF THE LAYZER MODEL… PHYSICAL REVIEW E 78, 015303�R� �2008�

RAPID COMMUNICATIONS

015303-3



Interestingly, Fig. 1 shows an upper limit on �0 but no
lower limit, suggesting that for large �0k the model may be
used for spikes but not for bubbles. This is the exact opposite
of what Layzer advocated—his model was good for bubbles
but not for spikes. Of course he had set �0=0 so this situa-
tion could not arise. To check, we replaced the low density
fluid �hexane� by air in our simulations of the LEM experi-
ment �8� so A�1, and the results are shown in Fig. 4 for
�0

bubble=0.13, 0.3, and 0.5 cm, using �0
spike=−�0

bubble follow-
ing Zhang. The first two simulations exhibit fair agreement
with the model for both bubble and spike. As for �0

=0.5 cm, it is above ��0�max �=1 /k=0.39 cm� and indeed the
bubble solution fails while the spike solution appears reason-
ably well reproduced.

Conclusions. For any A one may use the Layzer model for
bubbles as long as �0� ��0�max given in Eq. �8�. In addition,
the acceleration history must not admit sign-changing solu-
tions to the linear equation, Eq. �1�. For any A Goncharov’s
model �7� for spikes more often than not gives erroneous
results, although they are not as patently wrong as when
bubbles violate the ��0�max condition. Zhang’s model for
spikes �6�, valid for A=1 only, appears to be quite reasonable
�we performed 3D simulations and obtained similar results�,
leading to the unexpected situation that for �0� ��0�max we
have a model for spikes but not for bubbles.
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FIG. 4. RT bubbles and spikes in a downward-moving LEM
“experiment” with perturbations of �0=0.13, 0.3, or 0.5 cm on the
surface of the water-NaI solution. Thick continuous lines are from
the model �see text� and thin dashed lines from CALE simulations.
The light fluid is air. The inset from the 0.5 cm run shows the fluid
at 18 ms. Bubbles and spikes are measured relative to the nominal
�unperturbed� surface indicated by the dashed line.
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